Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27
نویسندگان
چکیده
The recently reported Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness in humans with an approximately 30% mortality rate. The envelope spike glycoprotein on the surface of MERS-CoV mediates receptor binding, membrane fusion, and viral entry. We previously reported two human monoclonal antibodies that target the receptor binding domain (RBD) of the spike and exhibit strong neutralization activity against live and pesudotyped MERS-CoV infection. Here we determined the crystal structure of MERS-CoV RBD bound to the Fab fragment of MERS-27 antibody at 3.20 Å resolution. The MERS-27 epitope in the RBD overlaps with the binding site of the MERS-CoV receptor DPP4. Further biochemical, viral entry, and neutralization analyses identified two critical residues in the RBD for both MERS-27 recognition and DPP4 binding. One of the residues, Trp535, was found to function as an anchor residue at the binding interface with MERS-27. Upon receptor binding, Trp535 interacts with the N-linked carbohydrate moiety of DPP4. Thus, MERS-27 inhibits MERS-CoV infection by directly blocking both protein-protein and protein-carbohydrate interactions between MERS-CoV RBD and DPP4. These results shed light on the molecular basis of MERS-27 neutralization and will assist in the optimization of MERS-27 as a tool to combat MERS-CoV infection.
منابع مشابه
A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein.
UNLABELLED Prophylactic and therapeutic strategies are urgently needed to combat infections caused by the newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have developed a neutralizing monoclonal antibody (MAb), designated Mersmab1, which potently blocks MERS-CoV entry into human cells. Biochemical assays reveal that Mersmab1 specifically binds to the receptor-bin...
متن کاملSingle-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection
Middle East respiratory syndrome coronavirus (MERS-CoV) is continuously spreading and causing severe and fatal acute respiratory disease in humans. Prophylactic and therapeutic strategies are therefore urgently needed to control MERS-CoV infection. Here, we generated a humanized monoclonal antibody (mAb), designated hMS-1, which targeted the MERS-CoV receptor-binding domain (RBD) with high affi...
متن کاملCharacterization of anti-MERS-CoV antibodies against various recombinant structural antigens of MERS-CoV in an imported case in China
The first imported case of Middle East respiratory syndrome (MERS) in China recently occurred, allowing for the characterization of antibody titers in a series of the patient's sera using the following methods based on recombinant viral structural antigens: inactivated MERS coronavirus (MERS-CoV) enzyme-linked immunosorbent assay (ELISA), recombinant MERS-CoV spike (S, or fragments of S) ELISA,...
متن کاملRecombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants.
Middle East respiratory syndrome coronavirus (MERS-CoV) binds to cellular receptor dipeptidyl peptidase 4 (DPP4) via the spike (S) protein receptor-binding domain (RBD). The RBD contains critical neutralizing epitopes and serves as an important vaccine target. Since RBD mutations occur in different MERS-CoV isolates and antibody escape mutants, cross-neutralization of divergent MERS-CoV strains...
متن کاملEvaluation of candidate vaccine approaches for MERS-CoV
The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA an...
متن کامل